

Oregon Dept. of Fish and Wildlife North Santiam Update with Elise Kelley

Winter Steelhead Run

- Stronger run than in past few years
- More than 5,000 winter steelhead had crossed Willamette Falls by mid-April

2017 and 2018 Sea Surface Temperatures

• Signs were indicating a gradual reverting to historical averages

Ocean Conditions for Salmon Growth and Survival

Ecosystem Indicators	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
PDO	19	6	3	13	7	21	12	17	14	9	5	1	16	4	2	8	10	22	20	18	11	15
(Sum Dec-March)	1.1222		1.07.1	-	1.1							-	and the second					and the second	1022	1.0000		
PDO	10	4	6	5	11	17	16	18	12	14	2	9	7	3	1	8	20	22	21	15	13	19
(Sum May-Sept)											_	-										
ONI	21	1	1	7	14	16	15	17	9	12	3	11	18	4	6	8	10	19	22	13	5	20
(AverageJan-June)																						
SST NDBC buoys	17	6	8	4	5	11	22	12	2	14	1	10	3	7	9	16	20	19	10	13	15	21
(°C; May-Sept)	11	D	8	4	2	11	- 22	12	2	14	1	10	3	1	9	10	20	19	18	13	15	21
Upper 20 m T	21		8	10	6	15	16	13	12	5	1	9		4		7	2	-	-	19		17
(°C; Nov-Mar)	44	11	8	10	Þ	15	30	13	12	2	<u>+</u>	9	18	4	3	1	4	22	20	13	14	74
Upper 20 m T			10	1.00		~	-	40		10	-		4.7	-		10	20			10	45	
(°C: May-Sept)	16	11	13	4	1	3	22	19	8	10	2	5	17	7	6	18	20	9	14	12	15	21
Deep temperature	and the			1.00	100	10	10	107.0		-	~	100				15	22	(and	10	100	~~	10
(°C; May-Sept)	22	6	8	4	1	10	12	16	11	5	2	7	14	9	3	15	21	19	13	18	20	17
Deep salinity	Sec. 1					and the second			1				-		1.1.1			1.00				
(May-Sept)	21	3	11	4	5	18	19	12	7	1	2	16	20	15	14	13	22	17	9	8	6	10
										_												
Copepod richness anom.	20	2	1	7	6	15	14	19	16	10	8	9	18	4	5	3	11	21	22	17	13	12
(no. species; May-Sept)													1.11.1121.11									
N. copepod biomass anom.	20	15	11	12	4	17	14	21	16	13	7	10	9	1	3	5	6	18	22	19	8	2
(mgC m ⁻³ ; May-Sept)		-		-							-							-				
S. copepod biomass anom.	22	2	5	4	3	15	16	21	14	10	1	7	17	9	8	6	11	19	20	18	13	12
(mgC m ⁻³ ; May-Sept)																		Contraction of the				
Biologicaltransition	19	11	6	7	8	15	12	20	14	3	1	2	17	4	9	5	10	21	21	18	13	15
(day of year)														1.1	_							
Nearshore Ichthyoplankton	17	4	11	6	1	21	22	16	8	18	3	13	2	7	5	10	19	14	15	12	9	20
Log(mgC 1,000 m ⁻³ ; Jan-Mar)																						
Nearshore & offshore			-													7			~~~	0.00		
khthyoplankton community	11	6	5	9	8	13	16	20	1	14	3	12	15	4	2	1	10	18	21	22	17	19
index (PCOaxis 1 scores: Jan-Mar)																			-			
Chinook salmon juvenile	20	4	5	17	8	12	18	21	13	11	1	6	7	16	2	3	10	14	19	22	15	9
catches (no. km ⁻¹ ; June)			1007		-				_					1000								
Coho salmon juvenile	20	8	14	6	7	3	17	21	18	4	5	10	11	16	19	1	13	9	15	22	2	12
catches (no. km ⁻¹ ; June)							1.250		1.1.1.1.1						C. Based					A MARKET		
Mean of ranks	18.5	6.3	7.3	7.4	5.9	13.9	16.4	17.7	10.9	9.6	2.9	8.6	13.1	7.1	6.1	8.3	13.4	17.7	18.3	16.6	11.8	15.1
	10.5	0.5	1.2	1.1	5.5	10.0	20.7	20.00	10.5	5.0	2	0.0			0.1	0.5	20.1		10.5	10.0		12.1
Rankofthemeanrank	22	4	6	7	2	15	17	19	11	10	1	9	13	5	3	8	14	19	21	18	12	16
					T									1000	1.18			10000		1.000		
Ecosystem Indicators not include	d in the	mean	of rank	orsta	tictical	analyse	e				-								-	-		
Physical Spring Trans.	a m the	mean	oj runk.	507 310	usuco/	undryse.								-							-	
	3	7	21	18	4	13	16	22	13	1	6	2	8	11	19	9	20	10	5	17	11	13
UI based (day of year)			Constraints.							_												
Physical Spring Trans.	21	3	13	8	5	12	15	22	6	9	1	9	19	3	11	2	17	7	18	20	15	14
Hydrographic (day of year)					_																	
UpwellingAnomaly	11	3	18	7	10	15	14	22	11	5	8	9	16	18	16	13	20	1	2	21	6	4
(April-May)												2				-						
Length of Upwelling Season	6	2	20	13	1	15	11	22	5	3	9	3	17	19	17	16	21	12	8	14	7	10
UI based (days)					1									1								
Copepod Community Index	21	3	5	8	2	16	14	20	17	10	1	7	13	9	6	4	11	19	22	18	12	15
(MDS axis 1 scores; May-Sept)	1000							And a second				2 22 2			1000			and the second second	1000	1		

- Pacific ocean looked to be improving last year then flipped back to poorer conditions
- Subsurface temperatures were higher than average indicating heat being stored in the ocean

ODFW - North Santiam

Willamette River 2020 Adult Spring Chinook Forecast: 40,750

Willamette River 2019 Adult Spring Chinook Forecast: 40,200

Chinook started crossing Willamette Falls in good numbers in mid-April