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HABs are a problem

 People, Pets, Fisheries
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 We will see radical changes in Oregon’s weather In
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2040-2069

The average number of days per year where temperature >86°F

Fig: OCCRI (Oregon Climate Change Research Institute) 11
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HABs are the new normal

e Instead of a once In a decade event, HABs will
regularly occur each year

e AHAB early-warning system is critical *now?,
and for going into an uncharted future
 With challenges there are opportunities:
- Take advantage of the data revolution
- Lead the push for smart & resilient communities

- Make use of Internet of Things (IO07)
technologies
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Last year

OSU meeting last summer: Nitin Joshi and Devin
Doring described the situation at Detroit Lake

“| dare you to solve this problem...”

Devin Doring presenting at
OSU (2018)
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e Phase 1.
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Our solution:

- Review state of the art in terms of HAB prediction

- Choose method for predicting HABs In Detroit Lake
(providing measures of uncertainty... this is a risk
management problem)

- ldentify important variables

- Help design future monitoring and prediction of
HABSs In the lake
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Big Data

Current data streams provided by COS:

Cyanobacteria

Not all blooms
are toxic!

2012 2013 2014 2015 2016 2017 2018




The bloom season

o Clearly define the harmful algal bloom season...
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The bloom season

Clearly define the harmful algal bloom season...
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HAB Season
As more data come in, we will track
when the season starts and ends
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Brilllant algorithms
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Mathematical Modeling

Estimated
Toxin Level

Since all models are wrong the scientist cannot obtain
a “correct’”’ one by excessive elaboration. On the contrary
following William of Occam he should seek an economical
description of natural phenomena.

Since all models are wrong the scientist must be alert to
what is importantly wrong. It is inappropriate to be con-
cerned about mice when there are tigers abroad.
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Probability

Toxin Level

Since all models are wrong the scientist cannot obtain
a “correct’”’ one by excessive elaboration. On the contrary
following William of Occam he should seek an economical
description of natural phenomena.
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Machine Learning:
Finding an effective model

e Model choice from validated data
Data

 Data complexity vs. model complexity
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Probability

Bayesian Model Averaging

 All models are wrong but some are useful

Toxin

Temperature
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Bayesian Model Averaging

0 Posterior distribution:

/«’/ P—re;liously
Observed Data

Tomorrow’s
Cyanobacteria Level

Model Choice
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Bayesian Model Averaging

Posterior distribution:

Previously
Observed Data

Tomorrow’s
Cyanobacteria Level

Model Choice

« Bayes Theorem:

 Balancing assumptions with evidence
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2018 back-test
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Train models on all data excluding 2018
Test model on 2018... what if this were last year
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2018 back-test

Train models on all data excluding 2018
Test model on 2018... what if this were last year

2012 2013 2014 2015 2016 2017 2018
Training data Test data
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Observed Cyanobacteria Biovolume
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2018 back-test

 |magine its 2018....Tor algal concentrations our
accuracy was 80-92%*

There will always be
uncertainty i

Error-bars are important +

X s

Month in 2018

Observed Cyanobacteria Biovolume
awnjoAolg elid)oeqouein payoipald

*depending upon the definition of a “bloom”
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Beautiful blog

 We wanted something more visually compelling
than other HAB data portals

e Balance usability and knowledge transfer (for
the public and City of Salem staff)

o https://thepredictionlabllc.qgithub.io/detroit-lake-
predictions/
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% Historical Maximum
[ ssiigpnaness . Are algae present?
Is it hot?

'Are there nitrates?
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We are ready! big data, algorithms, blog
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47




The future

. . review state of the art
° . make predictions with data in hand
e Phase 3:

— Maintain prediction system (our algorithms will
continue to learn and improve)

— Create new (vital) data streams

— Create new machine learning models
— Enhance geovizualization

— Near real-time predictions
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2

—

Sentinel 2
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The future: continuous recorder

« Satellite data only scratch the surface...

Toxic algae can be hidden

| . .
below the surface! YSI vertical profiler collects

information at all depths
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The next step: real-time predictions

Continuous monitoring

of Detroit Lake

Seamless
integration of
satellite data

Enhanced
online/mobile
visualization

—N

Improved
models
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Phase 3+ : other water systems

Photo: Brandin Hilbrandt, Detroit Lake, 03/19
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THE END

James Watson, Mat Titus
email: info@thepredictionlab.com
web: www.thepredictionlab.com
HAB blog: https://thepredictionlabllc.github.io/detroit-lake-predictions/
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Last thoughts: an amazing future
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Last thoughts: an amazing future

The future is now (these
photos are all real)

There are amazing new
services
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Last thoughts: an amazing future

Can we maintain essential
D services like clean water?
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Last thoughts: an amazing future

Can we maintain essential
D services like clean water?

Yes: with big data and
brilliant algorithms

Photo: Brandin Hilbrandt, Detroit Lake two weeks ago
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Adaptability and Potential

 Next-gen data
— YSI profiler
— Satellite hyperspectral imagery
— In-house assays

D

 Next-gen tools
— Dimension Reduction Techniques
— Bayesian Neural Networks
— Convolutional Neural Networks
— Variational Autoencoders
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